Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bottom-up proteomics16
    • Discovery proteomics16
    • MS-based targeted proteomics16
    • MS-based untargeted proteomics16
    • Metaproteomics16
    • Peptide identification16
    • Protein and peptide identification16
    • Proteomics16
    • Quantitative proteomics16
    • Targeted proteomics16
    • Top-down proteomics16
    • Proteogenomics4
    • Taxonomy3
    • Biodiversity2
    • Community analysis2
    • Environmental microbiology2
    • Metagenomics2
    • Metatranscriptomics2
    • Microbial ecology2
    • Microbiome2
    • Molecular community analysis2
    • Shotgun metagenomics2
    • Show N_FILTERS more
    • Tool
    • Galaxy15
    • UniProt3
    • Unipept3
    • msConvert3
    • MaxQuant2
    • metaQuantome2
    • Cardinal1
    • FlashLFQ1
    • MSstats1
    • MetaNovo1
    • WoLF PSORT1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training16
    • Show N_FILTERS more
    • Keyword
    • Proteomics
    • microgalaxy32
    • biodiversity21
    • Genome Annotation16
    • Assembly15
    • jbrowse115
    • Microbiome14
    • gmod14
    • Galaxy Server administration10
    • Transcriptomics10
    • Using Galaxy and Managing your Data10
    • prokaryote10
    • Introduction to Galaxy Analyses9
    • eukaryote9
    • Epigenetics8
    • Variant Analysis8
    • work-in-progress7
    • Sequence analysis6
    • assembly6
    • nanopore6
    • DDA5
    • Single Cell5
    • Statistics and machine learning5
    • collections5
    • label-TMT115
    • metagenomics5
    • 16S4
    • Computational chemistry4
    • Ecology4
    • ansible4
    • illumina4
    • metabarcoding4
    • plants4
    • ChIP-seq3
    • EBV dataset3
    • Foundations of Data Science3
    • Genetic composition EBV class3
    • RAD-seq3
    • amr3
    • apollo23
    • bacteria3
    • cyoa3
    • git-gat3
    • metatranscriptomics3
    • one-health3
    • EBV workflow2
    • HeLa2
    • Metabolomics2
    • QC2
    • VGP2
    • covid192
    • eukaryota2
    • human2
    • interactive-tools2
    • maker2
    • monitoring2
    • mouse2
    • pacbio2
    • 10x1
    • Braker31
    • Climate1
    • Contributing to the Galaxy Training Material1
    • EBV workflowz1
    • Evolution1
    • FAIR Learning Objects1
    • FAIR-by-Design Learning Materials1
    • FAIR-by-Design Methodology1
    • Heatmap1
    • MIGHTS1
    • Machine learning1
    • Nanopore data analysis1
    • Pan-cancer1
    • Pathogens detection1
    • Phylogenetic tree1
    • SILAC1
    • Species population EBV class1
    • Species populations EBV class1
    • Visualisation1
    • annotation1
    • beer1
    • binning1
    • broken1
    • bulk1
    • cancer biomarkers1
    • citizen science1
    • cloud1
    • cookbook1
    • data handling1
    • deploying1
    • diversity1
    • drosophila1
    • español1
    • essential genes1
    • evolution1
    • functional annotation1
    • helixer1
    • imaging1
    • intermine1
    • miRNA1
    • network analysis1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner10
    • Intermediate4
    • Advanced2
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International16
    • Show N_FILTERS more
    • Target audience
    • Students16
    • Show N_FILTERS more
    • Author
    • Subina Mehta9
    • Björn Grüning6
    • Dechen Bhuming5
    • Florian Christoph Sigloch5
    • Katherine Do5
    • Pratik Jagtap4
    • Timothy J. Griffin4
    • Emma Leith3
    • Marie Crane3
    • Praveen Kumar2
    • Clemens Blank1
    • David Christiany1
    • Florence Combes1
    • James Johnson1
    • Matthias Fahrner1
    • Melanie Föll1
    • Valentin Loux1
    • Yves Vandenbrouck1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut
    • Björn Grüning27
    • Saskia Hiltemann26
    • Subina Mehta24
    • Melanie Föll20
    • Helena Rasche19
    • Pratik Jagtap13
    • Timothy J. Griffin13
    • Nicola Soranzo10
    • Armin Dadras6
    • Martin Čech6
    • Niall Beard6
    • Florian Christoph Sigloch5
    • Clemens Blank3
    • Mallory Freeberg3
    • William Durand3
    • Pavankumar Videm2
    • Anthony Bretaudeau1
    • Florence Combes1
    • Helge Hecht1
    • James Johnson1
    • Jayadev Joshi1
    • Kristina Gomoryova1
    • Lucille Delisle1
    • Matthias Fahrner1
    • Mélanie Petera1
    • Wolfgang Maier1
    • npinter1
    • Show N_FILTERS more
    • Resource type
    • e-learning16
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Associated Workflows17
    • Quarto/RMarkdown Notebook2
    • DDA1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Proteomics

and Contributors: Bérénice Batut

and Related resources: Associated Training Datasets

16 materials found
  • e-learning

    Label-free versus Labelled - How to Choose Your Quantitation Method

    • beginner
    Proteomics DDA
  • e-learning

    Clinical Metaproteomics 4: Quantitation

    • beginner
    Proteomics label-TMT11
  • e-learning

    metaQuantome 2: Function

    •• intermediate
    Proteomics Proteogenomics Metatranscriptomics Microbial ecology Metagenomics microgalaxy
  • e-learning

    Clinical Metaproteomics 5: Data Interpretation

    • beginner
    Proteomics label-TMT11
  • e-learning

    Annotating a protein list identified by LC-MS/MS experiments

    • beginner
    Proteomics DDA human
  • e-learning

    Peptide and Protein Quantification via Stable Isotope Labelling (SIL)

    ••• advanced
    Proteomics DDA SILAC
  • e-learning

    Clinical Metaproteomics 3: Verification

    • beginner
    Proteomics label-TMT11
  • e-learning

    Peptide and Protein ID using OpenMS tools

    ••• advanced
    Proteomics DDA HeLa
  • e-learning

    metaQuantome 3: Taxonomy

    •• intermediate
    Proteomics Proteogenomics Metatranscriptomics Microbial ecology Metagenomics Taxonomy microgalaxy
  • e-learning

    metaQuantome 1: Data creation

    •• intermediate
    Proteomics Proteogenomics Biodiversity Taxonomy microgalaxy
  • 1
  • 2
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.