Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods5
    • Biostatistics5
    • Descriptive statistics5
    • Gaussian processes5
    • Inferential statistics5
    • Markov processes5
    • Multivariate statistics5
    • Probabilistic graphical model5
    • Probability5
    • Statistics5
    • Statistics and probability5
    • Show N_FILTERS more
    • Tool
    • Galaxy4
    • scikit-learn3
    • IWTomics1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training5
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • microgalaxy32
    • biodiversity21
    • Genome Annotation16
    • Proteomics16
    • Assembly15
    • jbrowse115
    • Microbiome14
    • gmod14
    • Galaxy Server administration10
    • Transcriptomics10
    • Using Galaxy and Managing your Data10
    • prokaryote10
    • Introduction to Galaxy Analyses9
    • eukaryote9
    • Epigenetics8
    • Variant Analysis8
    • work-in-progress7
    • Sequence analysis6
    • assembly6
    • nanopore6
    • DDA5
    • Single Cell5
    • collections5
    • label-TMT115
    • metagenomics5
    • 16S4
    • Computational chemistry4
    • Ecology4
    • ansible4
    • illumina4
    • metabarcoding4
    • plants4
    • ChIP-seq3
    • EBV dataset3
    • Foundations of Data Science3
    • Genetic composition EBV class3
    • RAD-seq3
    • amr3
    • apollo23
    • bacteria3
    • cyoa3
    • git-gat3
    • metatranscriptomics3
    • one-health3
    • EBV workflow2
    • HeLa2
    • Metabolomics2
    • QC2
    • VGP2
    • covid192
    • eukaryota2
    • human2
    • interactive-tools2
    • maker2
    • monitoring2
    • mouse2
    • pacbio2
    • 10x1
    • Braker31
    • Climate1
    • Contributing to the Galaxy Training Material1
    • EBV workflowz1
    • Evolution1
    • FAIR Learning Objects1
    • FAIR-by-Design Learning Materials1
    • FAIR-by-Design Methodology1
    • Heatmap1
    • MIGHTS1
    • Machine learning1
    • Nanopore data analysis1
    • Pan-cancer1
    • Pathogens detection1
    • Phylogenetic tree1
    • SILAC1
    • Species population EBV class1
    • Species populations EBV class1
    • Visualisation1
    • annotation1
    • beer1
    • binning1
    • broken1
    • bulk1
    • cancer biomarkers1
    • citizen science1
    • cloud1
    • cookbook1
    • data handling1
    • deploying1
    • diversity1
    • drosophila1
    • español1
    • essential genes1
    • evolution1
    • functional annotation1
    • helixer1
    • imaging1
    • intermine1
    • miRNA1
    • network analysis1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner5
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International5
    • Show N_FILTERS more
    • Target audience
    • Students5
    • Show N_FILTERS more
    • Author
    • Anup Kumar3
    • Bérénice Batut1
    • Daniel Blankenberg1
    • Ekaterina Polkh1
    • Fabio Cumbo1
    • Marzia A Cremona1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut
    • Saskia Hiltemann19
    • Björn Grüning16
    • Helena Rasche16
    • Martin Čech14
    • Anup Kumar12
    • Armin Dadras11
    • Kaivan Kamali7
    • Teresa Müller7
    • Alireza Khanteymoori5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Enis Afgan1
    • Mélanie Petera1
    • Nate Coraor1
    • Niall Beard1
    • Nicola Soranzo1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning5
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Associated Workflows5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Statistics and machine learning

and Contributors: Bérénice Batut

and Related resources: Associated Training Datasets

5 materials found
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Machine learning: classification and regression

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.