Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods2
    • Biostatistics2
    • Descriptive statistics2
    • Gaussian processes2
    • Inferential statistics2
    • Markov processes2
    • Multivariate statistics2
    • Probabilistic graphical model2
    • Probability2
    • Statistics2
    • Statistics and probability2
    • Algorithms1
    • Computer programming1
    • Data structures1
    • Programming languages1
    • Software development1
    • Software engineering1
    • Show N_FILTERS more
    • Tool
    • Galaxy2
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training3
    • Show N_FILTERS more
    • Keyword
    • interactive-tools
    • Statistics and machine learning11
    • Proteomics6
    • Galaxy Server administration5
    • DDA4
    • ansible4
    • ChIP-seq3
    • Epigenetics3
    • Introduction to Galaxy Analyses3
    • Single Cell3
    • git-gat3
    • work-in-progress3
    • HeLa2
    • Transcriptomics2
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • 10x1
    • Computational chemistry1
    • GO enrichment1
    • Imaging1
    • QC1
    • SILAC1
    • Using Galaxy and Managing your Data1
    • Variant Analysis1
    • broken1
    • bulk1
    • collections1
    • cyoa1
    • dephosphorylation-site-prediction1
    • drosophila1
    • epigenetics1
    • fine-tuning1
    • human1
    • image-segmentation1
    • imaging1
    • jobs1
    • monitoring1
    • mouse1
    • protein-3D-structure1
    • rna-seq1
    • single cell1
    • single-cell1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner3
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International3
    • Show N_FILTERS more
    • Target audience
    • Students2
    • Galaxy Administrators1
    • Show N_FILTERS more
    • Author
    • Anup Kumar2
    • Anthony Bretaudeau1
    • Helena Rasche1
    • José Manuel Domínguez1
    • Nate Coraor1
    • Simon Gladman1
    • Show N_FILTERS more
    • Contributor
    • Armin Dadras
    • Saskia Hiltemann10
    • Helena Rasche9
    • Martin Čech9
    • Björn Grüning8
    • Anne Fouilloux5
    • Nate Coraor4
    • Anup Kumar2
    • Beatriz Serrano-Solano2
    • Bérénice Batut2
    • Matthias Bernt2
    • Yvan Le Bras2
    • Anthony Bretaudeau1
    • Cristóbal Gallardo1
    • Gianmauro Cuccuru1
    • José Manuel Domínguez1
    • Kaivan Kamali1
    • Lucille Delisle1
    • Marius van den Beek1
    • Mateusz Kuzak1
    • Michelle Terese Savage1
    • Nicola Soranzo1
    • Simon Gladman1
    • Teresa Müller1
    • Tomas Klingström1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning3
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Associated Workflows1
    • Quarto/RMarkdown Notebook1
    • ansible1
    • interactive-tools1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Contributors: Armin Dadras

and Keywords: interactive-tools

and Related resources: Associated Training Datasets

3 materials found
  • e-learning

    Fine tune large protein model (ProtTrans) using HuggingFace

    • beginner
    Statistics and probability Statistics and machine learning deep-learning dephosphorylation-site-prediction fine-tuning interactive-tools jupyter-lab machine-learning
  • e-learning

    A Docker-based interactive Jupyterlab powered by GPU for artificial intelligence in Galaxy

    • beginner
    Statistics and probability Statistics and machine learning deep-learning image-segmentation interactive-tools jupyter-lab machine-learning protein-3D-structure
  • e-learning

    Galaxy Interactive Tools

    • beginner
    Software engineering Galaxy Server administration ansible interactive-tools
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.