Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods6
    • Biostatistics6
    • Descriptive statistics6
    • Gaussian processes6
    • Inferential statistics6
    • Markov processes6
    • Multivariate statistics6
    • Probabilistic graphical model6
    • Probability6
    • Statistics6
    • Statistics and probability6
    • Show N_FILTERS more
    • Tool
    • Galaxy4
    • scikit-learn3
    • IWTomics1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training6
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • microgalaxy27
    • Galaxy Server administration19
    • Contributing to the Galaxy Training Material17
    • Microbiome15
    • Development in Galaxy13
    • biodiversity13
    • Assembly12
    • Introduction to Galaxy Analyses12
    • Proteomics12
    • Transcriptomics11
    • Epigenetics10
    • ansible10
    • Genome Annotation9
    • Using Galaxy and Managing your Data9
    • git-gat9
    • Variant Analysis8
    • gmod8
    • prokaryote8
    • elixir7
    • jbrowse17
    • Sequence analysis6
    • Teaching and Hosting Galaxy training6
    • assembly6
    • nanopore6
    • train-the-trainers6
    • work-in-progress6
    • Foundations of Data Science5
    • Single Cell5
    • label-TMT115
    • metagenomics5
    • plants5
    • 16S4
    • DDA4
    • Ecology4
    • illumina4
    • interactive-tools4
    • metabarcoding4
    • ChIP-seq3
    • EBV dataset3
    • Galaxy Community Building3
    • Genetic composition EBV class3
    • QC3
    • RAD-seq3
    • amr3
    • bacteria3
    • eukaryote3
    • metatranscriptomics3
    • monitoring3
    • Climate2
    • EBV workflow2
    • Metabolomics2
    • collections2
    • covid192
    • cyoa2
    • deploying2
    • jobs2
    • mouse2
    • one-health2
    • storage2
    • workflows2
    • 10x1
    • Community1
    • EBV workflowz1
    • Evolution1
    • FAIR Learning Objects1
    • FAIR-by-Design Learning Materials1
    • FAIR-by-Design Methodology1
    • HeLa1
    • Heatmap1
    • MIGHTS1
    • Machine learning1
    • Nanopore data analysis1
    • Pan-cancer1
    • Pathogens detection1
    • Phylogenetic tree1
    • R1
    • SIG1
    • SQL1
    • Species population EBV class1
    • Species populations EBV class1
    • Visualisation1
    • ai-ml1
    • animals1
    • annotation1
    • apollo21
    • authentication1
    • beer1
    • binning1
    • broken1
    • bulk1
    • cancer biomarkers1
    • citizen science1
    • cloud1
    • cookbook1
    • data handling1
    • diversity1
    • drosophila1
    • español1
    • essential genes1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner
    • Intermediate10
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International6
    • Show N_FILTERS more
    • Target audience
    • Students6
    • Show N_FILTERS more
    • Author
    • Anup Kumar3
    • Bérénice Batut1
    • Daniel Blankenberg1
    • Ekaterina Polkh1
    • Fabio Cumbo1
    • Marzia A Cremona1
    • Vijay1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut
    • Saskia Hiltemann20
    • Björn Grüning15
    • Helena Rasche15
    • Martin Čech14
    • Anup Kumar12
    • Armin Dadras11
    • Kaivan Kamali7
    • Teresa Müller7
    • Alireza Khanteymoori5
    • Cristóbal Gallardo2
    • Fabio Cumbo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Sobral1
    • Enis Afgan1
    • Mélanie Petera1
    • Nate Coraor1
    • Niall Beard1
    • Nicola Soranzo1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning5
    • slides1
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets5
    • Associated Workflows5
    • Jupyter Notebook (with Solutions)1
    • Jupyter Notebook (without Solutions)1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Contributors: Bérénice Batut

and Keywords: Statistics and machine learning

and Difficulty level: Beginner

6 materials found
  • slides

    Foundational Aspects of Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning ai-ml elixir
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Machine learning: classification and regression

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.