Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Biological sequences25
    • Sequence analysis25
    • Sequence databases25
    • Exomes22
    • Genome annotation22
    • Genomes22
    • Genomics22
    • Personal genomics22
    • Synthetic genomics22
    • Viral genomics22
    • Whole genomes22
    • Algorithms19
    • Computer programming19
    • Data structures19
    • Programming languages19
    • Software development19
    • Software engineering19
    • Assembly16
    • Community analysis16
    • Environmental microbiology16
    • Metagenomics16
    • Microbial ecology16
    • Microbiome16
    • Molecular community analysis16
    • Sequence assembly16
    • Shotgun metagenomics16
    • Antimicrobial stewardship14
    • Medical microbiology14
    • Microbial genetics14
    • Microbial physiology14
    • Microbial surveillance14
    • Microbiological surveillance14
    • Microbiology14
    • Molecular infection biology14
    • Molecular microbiology14
    • Bottom-up proteomics12
    • Discovery proteomics12
    • MS-based targeted proteomics12
    • MS-based untargeted proteomics12
    • Metaproteomics12
    • Peptide identification12
    • Protein and peptide identification12
    • Proteomics12
    • Quantitative proteomics12
    • Targeted proteomics12
    • Top-down proteomics12
    • Comparative transcriptomics11
    • Taxonomy11
    • Transcriptome11
    • Transcriptomics11
    • Epigenomics10
    • DNA variation8
    • Genetic variation8
    • Genomic variation8
    • Mutation8
    • Polymorphism8
    • Somatic mutations8
    • Bayesian methods6
    • Biostatistics6
    • Descriptive statistics6
    • Gaussian processes6
    • Inferential statistics6
    • Markov processes6
    • Multivariate statistics6
    • Probability6
    • Statistics6
    • Statistics and probability6
    • Biodiversity5
    • DNA metabarcoding5
    • De novo genome sequencing5
    • Environmental metabarcoding5
    • Epidemiology5
    • Genome sequencing5
    • Metabarcoding5
    • Public health5
    • Public health and epidemiology5
    • RNA metabarcoding5
    • WGS5
    • Whole genome resequencing5
    • Whole genome sequencing5
    • eDNA metabarcoding5
    • eRNA metabarcoding5
    • Computational ecology4
    • Ecoinformatics4
    • Ecological informatics4
    • Ecology4
    • Ecosystem science4
    • AMR3
    • Antibiotic resistance (ABR)3
    • Antifungal resistance3
    • Antimicrobial resistance3
    • Antiprotozoal resistance3
    • Antiviral resistance3
    • Communicable disease3
    • Extensive drug resistance (XDR)3
    • Function analysis3
    • Functional analysis3
    • Gene and protein families3
    • Gene families3
    • Show N_FILTERS more
    • Tool
    • Galaxy4
    • scikit-learn3
    • IWTomics1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training6
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning6
    • Machine learning1
    • Pan-cancer1
    • ai-ml1
    • cancer biomarkers1
    • elixir1
    • oncogenes and tumor suppressor genes1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner
    • Intermediate10
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International6
    • Show N_FILTERS more
    • Target audience
    • Students6
    • Show N_FILTERS more
    • Author
    • Anup Kumar3
    • Bérénice Batut1
    • Daniel Blankenberg1
    • Ekaterina Polkh1
    • Fabio Cumbo1
    • Marzia A Cremona1
    • Vijay1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Bérénice Batut
    • Saskia Hiltemann21
    • Björn Grüning16
    • Helena Rasche15
    • Martin Čech14
    • Anup Kumar12
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Cristóbal Gallardo2
    • Fabio Cumbo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Mélanie Petera1
    • Nate Coraor1
    • Niall Beard1
    • Nicola Soranzo1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning5
    • slides1
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets5
    • Associated Workflows5
    • Jupyter Notebook (with Solutions)1
    • Jupyter Notebook (without Solutions)1
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Difficulty level: Beginner

and Contributors: Bérénice Batut

6 materials found
  • slides

    Foundational Aspects of Machine Learning

    • beginner
    Statistics and probability Statistics and machine learning ai-ml elixir
  • e-learning

    PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis

    • beginner
    Statistics and probability Machine learning Pan-cancer Statistics and machine learning cancer biomarkers oncogenes and tumor suppressor genes
  • e-learning

    Machine learning: classification and regression

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Age prediction using machine learning

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Interval-Wise Testing for omics data

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Basics of machine learning

    • beginner
    Statistics and probability Statistics and machine learning
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.