Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Probabilistic graphical model
    • Bottom-up proteomics33
    • Discovery proteomics33
    • MS-based targeted proteomics33
    • MS-based untargeted proteomics33
    • Metaproteomics33
    • Peptide identification33
    • Protein and peptide identification33
    • Proteomics33
    • Quantitative proteomics33
    • Targeted proteomics33
    • Top-down proteomics33
    • Exomes32
    • Genome annotation32
    • Genomes32
    • Genomics32
    • Personal genomics32
    • Synthetic genomics32
    • Viral genomics32
    • Whole genomes32
    • Algorithms26
    • Computer programming26
    • Data structures26
    • Programming languages26
    • Software development26
    • Software engineering26
    • Bayesian methods23
    • Biostatistics23
    • Descriptive statistics23
    • Gaussian processes23
    • Inferential statistics23
    • Markov processes23
    • Multivariate statistics23
    • Probability23
    • Statistics23
    • Statistics and probability23
    • Assembly21
    • Biological sequences21
    • Sequence analysis21
    • Sequence assembly21
    • Sequence databases21
    • Comparative transcriptomics20
    • Transcriptome20
    • Transcriptomics20
    • Antimicrobial stewardship17
    • Medical microbiology17
    • Microbial genetics17
    • Microbial physiology17
    • Microbial surveillance17
    • Microbiological surveillance17
    • Microbiology17
    • Molecular infection biology17
    • Molecular microbiology17
    • DNA variation15
    • Genetic variation15
    • Genomic variation15
    • Mutation15
    • Polymorphism15
    • Somatic mutations15
    • Community analysis14
    • Computational ecology14
    • Ecoinformatics14
    • Ecological informatics14
    • Ecology14
    • Ecosystem science14
    • Environmental microbiology14
    • Metagenomics14
    • Microbial ecology14
    • Microbiome14
    • Molecular community analysis14
    • Shotgun metagenomics14
    • Epigenomics12
    • Biodiversity10
    • Diffraction experiment9
    • Imaging9
    • Microscopy9
    • Microscopy imaging9
    • Optical super resolution microscopy9
    • Photonic force microscopy9
    • Photonic microscopy9
    • Taxonomy9
    • Computational chemistry7
    • Epidemiology6
    • Exometabolomics6
    • LC-MS-based metabolomics6
    • MS-based metabolomics6
    • MS-based targeted metabolomics6
    • MS-based untargeted metabolomics6
    • Mass spectrometry-based metabolomics6
    • Metabolites6
    • Metabolome6
    • Metabolomics6
    • Metabonomics6
    • NMR-based metabolomics6
    • Public health6
    • Public health and epidemiology6
    • Communicable disease5
    • De novo genome sequencing5
    • Genome sequencing5
    • Infectious disease5
    • Show N_FILTERS more
    • Tool
    • Galaxy18
    • scikit-learn10
    • GEMINI1
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training23
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning22
    • Large Language Model5
    • ai-ml5
    • elixir5
    • jupyter-notebook5
    • interactive-tools4
    • deep-learning2
    • jupyter-lab2
    • machine-learning2
    • Digital Humanities1
    • dephosphorylation-site-prediction1
    • fine-tuning1
    • image-segmentation1
    • protein-3D-structure1
    • text mining1
    • work-in-progress1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner16
    • Intermediate7
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International23
    • Show N_FILTERS more
    • Target audience
    • Students23
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Bérénice Batut6
    • Raphael Mourad5
    • Alireza Khanteymoori4
    • Fabio Cumbo2
    • Kaivan Kamali2
    • Simon Bray2
    • Daniel Blankenberg1
    • Daniela Schneider1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Fotis E. Psomopoulos1
    • Marie Gramm1
    • Marzia A Cremona1
    • Show N_FILTERS more
    • Contributor
    • Björn Grüning
    • Saskia Hiltemann27
    • Anup Kumar20
    • Helena Rasche17
    • Bérénice Batut16
    • Martin Čech15
    • Armin Dadras11
    • Teresa Müller8
    • Kaivan Kamali7
    • Alireza Khanteymoori5
    • Wandrille Duchemin5
    • olisand5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Nate Coraor2
    • Simon Bray2
    • qiagu2
    • Anthony Bretaudeau1
    • Bert Droesbeke1
    • Charlotte Soneson1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Daniela Schneider1
    • Enis Afgan1
    • Janick Mathys1
    • Koen Van den Berge1
    • Laurent Gatto1
    • Lieven Clement1
    • Martin Morgan1
    • Mélanie Petera1
    • Niall Beard1
    • Nicola Soranzo1
    • Oliver Crook1
    • Stella Fragkouli1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning20
    • slides3
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets17
    • Associated Workflows14
    • Jupyter Notebook (with Solutions)5
    • Jupyter Notebook (without Solutions)5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Probabilistic graphical model

and Contributors: Björn Grüning

23 materials found
  • slides

    Convolutional neural networks (CNN) Deep Learning - Part 3

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Supervised Learning with Hyperdimensional Computing

    •• intermediate
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.