Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods6
    • Biostatistics6
    • Descriptive statistics6
    • Gaussian processes6
    • Inferential statistics6
    • Markov processes6
    • Multivariate statistics6
    • Probabilistic graphical model6
    • Probability6
    • Statistics6
    • Statistics and probability6
    • Show N_FILTERS more
    • Tool
    • Galaxy1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training6
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • jupyter-notebook16
    • Foundations of Data Science15
    • Proteomics13
    • biodiversity10
    • Computational chemistry7
    • Genome Annotation7
    • Assembly6
    • Using Galaxy and Managing your Data6
    • jbrowse16
    • microgalaxy6
    • ai-ml5
    • covid195
    • elixir5
    • eukaryote5
    • one-health5
    • Metabolomics4
    • gmod4
    • work-in-progress4
    • SQL3
    • Single Cell3
    • Variant Analysis3
    • Visualisation3
    • pacbio3
    • prokaryote3
    • proteogenomics3
    • workflows3
    • 10x2
    • DIA2
    • Galaxy Server administration2
    • Imaging2
    • R2
    • Transcriptomics2
    • VGP2
    • apollo22
    • assembly2
    • bash2
    • collections2
    • cyoa2
    • epigenetics2
    • eukaryota2
    • game2
    • interactive-tools2
    • kubernetes2
    • virology2
    • Braker31
    • Evolution1
    • HeLa1
    • ML1
    • Python1
    • Sequence analysis1
    • bulk1
    • cancer1
    • conda1
    • helixer1
    • human1
    • label-free1
    • quality control1
    • rmarkdown-notebook1
    • rna-seq1
    • single-cell1
    • tags1
    • tuberculosis1
    • viz1
    • Show N_FILTERS more
    • Difficulty level
    • Intermediate
    • Beginner20
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International6
    • Show N_FILTERS more
    • Target audience
    • Students6
    • Show N_FILTERS more
    • Author
    • Fotis E. Psomopoulos2
    • Ralf Gabriels2
    • Raphael Mourad1
    • Stella Fragkouli1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann
    • Bérénice Batut10
    • Anup Kumar8
    • Björn Grüning7
    • Wandrille Duchemin5
    • olisand5
    • Helena Rasche2
    • Anthony Bretaudeau1
    • Daniel Blankenberg1
    • Fabio Cumbo1
    • Martin Čech1
    • Nate Coraor1
    • Stella Fragkouli1
    • Show N_FILTERS more
    • Resource type
    • e-learning6
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)5
    • Jupyter Notebook (without Solutions)5
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Difficulty level: Intermediate

and Contributors: Saskia Hiltemann

and Keywords: Statistics and machine learning

6 materials found
  • e-learning

    Deep Learning (without Generative Artificial Intelligence) using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Generative Artificial Intelligence and Large Langage Model using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Regulations/standards for AI using DOME

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir
  • e-learning

    Foundational Aspects of Machine Learning using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook
  • e-learning

    Neural networks using Python

    •• intermediate
    Statistics and probability Statistics and machine learning ai-ml elixir jupyter-notebook work-in-progress
  • e-learning

    Introduction to Machine Learning using R

    •• intermediate
    Statistics and probability Statistics and machine learning interactive-tools
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.