Please note: This instance is for testing/development, and any content submitted may be changed or deleted without warning.
Training eSupport System
  • Log In
    • Login
    • Register
  • About
  • Events
  • Materials
  • e-Learning
  • Workflows
  • Collections
  • Learning paths
  • Directory
    • Trainers
    • Providers
    • Nodes

TeSS makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bayesian methods23
    • Biostatistics23
    • Descriptive statistics23
    • Gaussian processes23
    • Inferential statistics23
    • Markov processes23
    • Multivariate statistics23
    • Probabilistic graphical model23
    • Probability23
    • Statistics23
    • Statistics and probability23
    • Show N_FILTERS more
    • Tool
    • Galaxy21
    • scikit-learn15
    • GEMINI1
    • IWTomics1
    • PubMed1
    • Show N_FILTERS more
    • Content provider
    • Galaxy Training23
    • Show N_FILTERS more
    • Keyword
    • Statistics and machine learning
    • microgalaxy37
    • Proteomics36
    • Single Cell34
    • biodiversity27
    • Genome Annotation26
    • Transcriptomics26
    • Galaxy Server administration24
    • Assembly16
    • Microbiome16
    • Using Galaxy and Managing your Data15
    • jbrowse115
    • Ecology14
    • fair14
    • gmod14
    • prokaryote13
    • FAIR Data, Workflows, and Research12
    • Variant Analysis12
    • Epigenetics11
    • Sequence analysis11
    • paper-replication11
    • work-in-progress11
    • Evolution10
    • Foundations of Data Science10
    • Imaging10
    • Introduction to Galaxy Analyses10
    • MIGHTS10
    • Metabolomics10
    • ansible10
    • data stewardship10
    • eukaryote10
    • interactive-tools10
    • cyoa9
    • git-gat9
    • jupyter-notebook9
    • label-free9
    • plants9
    • Climate8
    • Computational chemistry7
    • DDA7
    • dmp7
    • 10x6
    • EBV dataset6
    • assembly6
    • collections6
    • nanopore6
    • transcriptomics6
    • EBV workflow5
    • Visualisation5
    • data management5
    • illumina5
    • label-TMT115
    • metagenomics5
    • one-health5
    • 16S4
    • DIA4
    • Genetic composition EBV class4
    • HeLa4
    • bacteria4
    • bioimaging4
    • covid194
    • metabarcoding4
    • mouse4
    • ChIP-seq3
    • FAIR3
    • QC3
    • RAD-seq3
    • amr3
    • apollo23
    • epigenetics3
    • metatranscriptomics3
    • open3
    • pangeo3
    • proteogenomics3
    • rmarkdown-notebook3
    • Community composition EBV class2
    • Contributing to the Galaxy Training Material2
    • Data Paper2
    • EML2
    • Metadata2
    • Species population EBV class2
    • Species populations EBV class2
    • Synthetic Biology2
    • VGP2
    • bulk2
    • climate2
    • data import2
    • deep-learning2
    • ecology2
    • essential genes2
    • eukaryota2
    • evolution2
    • human2
    • jobs2
    • jupyter-lab2
    • machine-learning2
    • maker2
    • monitoring2
    • networking2
    • pacbio2
    • Show N_FILTERS more
    • Difficulty level
    • Beginner22
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International23
    • Show N_FILTERS more
    • Target audience
    • Students23
    • Show N_FILTERS more
    • Author
    • Anup Kumar11
    • Kaivan Kamali7
    • Alireza Khanteymoori4
    • Daniel Blankenberg2
    • Fabio Cumbo2
    • Simon Bray2
    • Bérénice Batut1
    • Dennis Lal group1
    • Ekaterina Polkh1
    • Jeremy Goecks1
    • Junhao Qiu1
    • Marie Gramm1
    • Marzia A Cremona1
    • Paulo Cilas Morais Lyra Junior1
    • Vijay1
    • Show N_FILTERS more
    • Contributor
    • Saskia Hiltemann19
    • Björn Grüning16
    • Helena Rasche16
    • Martin Čech14
    • Anup Kumar12
    • Armin Dadras11
    • Kaivan Kamali7
    • Teresa Müller7
    • Alireza Khanteymoori5
    • Bérénice Batut5
    • Fabio Cumbo3
    • Cristóbal Gallardo2
    • Gildas Le Corguillé2
    • Michelle Terese Savage2
    • Simon Bray2
    • qiagu2
    • Bert Droesbeke1
    • Daniel Blankenberg1
    • Daniel Sobral1
    • Enis Afgan1
    • Mélanie Petera1
    • Nate Coraor1
    • Niall Beard1
    • Nicola Soranzo1
    • Vijay1
    • dlal-group1
    • Show N_FILTERS more
    • Resource type
    • e-learning17
    • slides6
    • Show N_FILTERS more
    • Related resource
    • Associated Training Datasets
    • Associated Workflows20
    • Jupyter Notebook (with Solutions)11
    • Jupyter Notebook (without Solutions)11
    • Show N_FILTERS more
  • Show disabled materials
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Related resources: Associated Training Datasets

and Keywords: Statistics and machine learning

23 materials found
  • e-learning

    Deep Learning (Part 3) - Convolutional neural networks (CNN)

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Image classification in Galaxy with fruit 360 dataset

    • beginner
    Statistics and probability Statistics and machine learning
  • e-learning

    Supervised Learning with Hyperdimensional Computing

    •• intermediate
    Statistics and probability Statistics and machine learning
  • 1
  • 2
  • 3
Training eSupport System
contact@example.com
Contribute
About TeSS
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.0
Source code
API documentation
Bioschemas testing tool

TeSS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676559.